Приказивање постова са ознаком energetska nezavisnost. Прикажи све постове
Приказивање постова са ознаком energetska nezavisnost. Прикажи све постове

понедељак, 20. април 2015.

Samostalni fotonaponski sistemi

Gde god nema elektrodistributivne mreže ili gde su troškovi priključenja na istu preveliki, samostalni fotonaponski sistemi se mogu koristiti za proizvodnju potrebne električne energije. Ovi sistemi se najčešće koriste u vikendicama, objektima udaljenim od elektrodistributivne mreže, u sistemima za navodnjavanje, za pokretanje pumpi za vodu, brodovima, kamperskim prikolicama i slično. Da su ovi sistemi odličan izbor za vikendice lako je zaključiti i na osnovu cena gde priključak na elektrodistributivnu mrežu košta oko 1000 evra, neki osnovni samostalni sistem za vikendice se može ugraditi za isti novac dok kasnije nemate račun za el. energiju. Nazivaju se jos i stand alone solarni sistemi, baterijski silarni sistemi ili nezavisni solarni sistemi.



Pošto solarni paneli proizvode električnu energiju samo tokom dana, neophodno je skladištiti energiju kako bi se mogla koristiti noću ili tokom oblačnih dana. U solarnim sistemima se koriste specijalne solarne baterije, koje imaju visoku efikasnost pri punjenju kako sa niskim tako i sa visokim naponima. U sistemima se koristi i kontoler napona koji sprečava prepunjavanje baterije takodje postoji i zaštita od dubokog pražnjenja baterije. Usled razlike u proizvodnji električne energije u letnjem i zimskom periodu, samostalni solarni sistemi se ili za nijansu predimenzionišu kako bi se pokrila i minimalna potrebna proizvodnja električne energije tokom zime, ili se sistem u zimskom periodu potpomaže upotrebom dizel agregata.

Solarni paneli će proizvesti električnu energiju koja će na izlazu iz baterija u većini slučajeva dati 12V ili 24V jednosmernog napona (DC). Pošto svi kućni aparati rade na naizmeničnom naponu od 220V, neophodno je koristiti invertor kako bi se omogućio nesmetani rad ovih aparata.



Jedan od najvažnijih zadataka prilikom projektovanja samostalnog fotonaponskog sistema je da se na osnovu predvidjene energetske potrošnje i prosečnog sunčevog zračenja na lokaciji odredi potreban broj solarnih panela i kapacitet solarnih baterija.

Generalno ukoliko planirate da ugradite samostalni fotonaponski sistem treba da obratite paznju na energetsku efikasnost uredjaja koje koristite. Trebalo bi da koristite štedljivu rasvetu, energetski efikasne aparate i da izbegavate upotrebu termičkih uredjaja poput šporeta i biojlera. Ukoliko povećate energetsku efikasnost trebaće Vam manji samostalni fotonaponski sistem. Pročitajte tekst 12 načina da povećate energetsku efikasnost u svom domu pre nego što ugradite solarne panele.

Proračunavanje veličine samostalnog fotonaponskog sistema


Procena prosečne dnevne potrošnje električne energije


Ovo se radi tako što se snaga svakog uredjaja koji koristite pomnoži sa brojem sati koliko radi u toku dana i onda potrošnja svih pojedinačnih uredjaja sabere kako bi se dobila konačna potrošnja. Na poledjini svakog el. uredjaja možete naći nalepnicu na kojoj piše snaga (Power) izražena u W (vatima).

Primer:
Štedljiva sijalica snage 20w x 5 radnih sati tokom dana = 100Wh odnosno 0.1kWh (1kw = 1000W)
Laptop računar snage 100W x 4 radna sata = 400Wh odnosno 0.4kWh
Bojler snage 2kw x 4 radna sata = 8kWh

Dakle u zbiru ovi uredjaji troše 8.5kWh dnevno.

Odredjivanje potrebnog broja solarnih panela


Da bi se odredio broj potrebnih solarnih panela potrebno je imati podatak o sunčevom zračenju na odredjenoj lokaciji, za ovu namenu koriste se specijalizovani softverski paketi mada se okvirne infromacije mogu naći i na internetu. Prosečna količina sunčevog zračenja za Srbiju iznosi 4 kWh/m2/na dan. Da bi se dobila količina proizvedene električne energije potrebno je da ovaj broj pomnozite za snagom solarnog panela (kWp iz specifikacije solarnog panela).

Primer:
Solarni paneli snage 1kW na dan mogu da proizvedu 1kw x 4 kWh/m2/na dan = 4 kWh/na dan







четвртак, 29. јануар 2015.

Koliki je životni vek solarne baterije?

Šta utiče na životni vek baterije?


Ciklus baterije je jedan krug kompletnog punjenja i pražnjenja. Obično se pod time podrazumeva pražnjenje sa 100% na 20% i punjenje nazad na 100%. Medjutim ponekad se ciklus može meriti i do druge vrednosti recimo 10% ili 50% su takodje često korišćene vrednosti. Prilikom gledanja broja predvidjenih ciklusa u specifikaciji odredjene baterije obratite pažnu i na podatak do kog procenta se prazni baterija prilikom ciklusa.


Na slici je prikazan generalan grafikon koji uopšteno prikazuje odnos broja ciklusa i dubine pražnjenja baterije. Svaka baterija ima svoj specifičan grafikon koji pokazuje tačan odnos za konkretnu bateriju.

Životni vek baterije je u direktoj povezanosti sa time koliko se duboko baterija prazni i puni prilikom svakog ciklusa. Ukoliko se baterije prazne 50% svaki dan, trajaće duplo duže nego ukoliko se svaki dan prazne do 80%. Ukoliko se prazne do 10%, trajaće otprilike pet puta duže nego ukoliko se prazne do 50%. Očigledno ovo ima nekih praktičnih limita, naravno neželite da imate 5 tona baterija koje vam zauzimaju ogroman prostor samo da bi im povećali radni vek. Najpraktičnije je tj. najbolji odnos dubine pražnjenja baterije i životnog veka baterije je kada se baterija prazni do 50%. To ne znači da povremeno ne možete isprazniti bateriju i do 80%.

Uticaj temperature na baterije 


Kapacitet baterije (koliko Ah može da drži) se smanjuje ukoliko se smanjuje temperatura, a povećava ukoliko raste temperatura. Zbog toga vaš automobilski akumulator crkava tokom hladnog zimskog jutra, iako je dan prethodno popodne radio normalno. Ukoliko vaše baterije provode deo godine na hladnoći, kapacitet koji se gubi mora biti uračunati prilikom proračuna potrebnog kapaciteta baterija. Standardne karakteristike važe za uslove sobne temperature 25 stepeni. Na približno -27 stepena kapacitet baterije opada na 50%. Prilikom zamrzavanja, kapacitet opada za 20%. Kapacitet se povećava pri većim temperaturama na 50 stepeni kapacitet će biti otprilike 12 puta veći.

Napon za punjenje baterija će se takodje menjati sa promenom temperature. Variraće od 2.74V po ćeliji (16.4V) na -40 stepeni do 2.3V po ćeliji (13.8V) na 50 stepeni.Ovo je razlog zbog kog bi vaš kontoler punjenja trebao da ima u sebi uredjaj za kompenzaciju temperature.

Iako je kapacitet baterije na višim temperaturama veći, životni vek baterija se smanjuje. Kapacitet baterije se smanjuje 50% na -30 stepeni, ali se životni vek baterije povećava za 60%. Životni vek baterija se smanjuje na višim temperaturama, ovo važi za sve tipove olovnih baterija bez obzira da li su gel, AGM ili baterija sa tečnim elektrolitom.

Pročitajte i naš tekst o baterijama koje se koriste u solarnim sistemima.

среда, 28. јануар 2015.

Kako najefikasnije smanjiti račun za električnu energiju

Mrežni fotonaponski sistemi se koriste kada želite da smanjite račun za električnu energiju, instaliranje ovakvog sistema je najefikasniji način da se to ostvari.

Mrežni fotonaponski sistem čine solarni paneli i mrežni invertor. Da bi ovaj sistem bilo moguće instalirati, objekat mora biti prethodno priključen na elektrodistributivnu mrežu. Ova vrsta sistema se vezuje direktno na kućnu instalaciju bez ikakve potrebe za adaptacijom instalacija. Prilikom instalacije ovakvih sistema mrežni invertor koji se ugradjuje se sinhronizuje sa elektrodistributivnom mrežom. Smisao ovakvog sistema je smanjenje vašeg mesečnog računa za električnu energiju. Sva proizvedena solarna električna energija odlazi na vašu kućnu potrošnju, dok višak proizvedene električne energije odlazi u elektrodistributivnu mrežu.

Tokom dana, kada solarni paneli proizvode električnu energiju možete trošiti svu energiju koju ovakav sistem proizvodi, bez brige o tarifnim zonama, jeftinoj i skupoj struji, jer vi trošite električnu energiju koju proizvodi vaš mrežni solarni sistem. U slučaju da vaš solarni sistem neproizvodi dovoljno električne energije za vaše potrebe, taj nedostatak se nadomešćuje energijom iz elektrodistributivne mreže. Dakle praktično, plaćate samo energiju koju povučete iz elektrodistributivne mreže, a to je uglavnom električna energija koju potrošite tokom noći i električna energija koju povučete iz elektrodistributivne mreže kada je vaša potrošna veća od vaše proizvodnje solarne električne energije.

Mrežni fotonaponski sistemi su jeftiniji, manje zahtevniji i dugotrajniji u odnosu na stand-alone sisteme. Ogromne prednosti ovog sistema u odnosu na stand-alone sistem je nepostojanje solarnih baterija, koje su jako skupe i imaju relativno kratak životni vek. Takodje nema prepravki električnih instalacija, što takodje značajno smanjuje troškove. Održavanje praktično ni nepostoji, očekivani radni vek solarnih panela je oko 25 godina a mrežnog invertora više od 10 godina što ovakvu vrstu sistema čini veoma dugovečnim.

Jedini nedostatak ovakvih sistema je zavisnost od elektrodistributivne mreze, u slučaju kada na elektrodistributivnoj mreži nestane struje nećete imati struje jer je mrežnim invertorima potrebno prisustvo mreže zbog sinhronizacije.

Postoje monofazni i trofazni mrežni fotonaponski sistemi. Da li ćete instalirati monofazni ili trofazni sistem zavisi od vašeg mrežnog priključka(dal je monofazni ili trofazni). U slučaju da imate trofazni priključak možete odabrati dal ćete instalirati monofazni ili trofazni sistem, dok u slučaju da imate monofazni priključak možete instalirati samo monofazni sistem.

уторак, 27. јануар 2015.

Solarni kolektori

Solarni kolektori. Vakumski kolektori ili pločasti kolektori?

Šta je solarni kolektor?


Solarni kolektori koriste energiju sunca kako bi generisali toplotu (ne električnu energiju) koja kasnije može biti iskorišćena da se zagreje voda za tuširanje, grejanje prostorija, neke industrijske procese.

Solarna energija je najveći izvor energje na planeti, obezbedjuje energiju za rast biljaka (fotosintezu) i obezbedjuje toplotu koja stvara pogodne uslove za zivot na našoj planeti.

Iako se uredjaji za solarno grejanje vode koriste već 100nak godina, u zadnjih 20 godina značajno je napredovala   tehnologija apsorbujućeg sloja, što je dovelo do toga da današnji solarni kolektori mogu efikasno konvertovati >50% dostupne sunčeve energije za zagrevanje tople vode. Solarni kolektor je jedan od najefikasnijih načina za smanjivanje ekološkog otiska (emisije ugljen-dioksida), smanjivanjem oslanjanja na fosilna goriva. Ugradnjom solarnog kolektora, smanjićete potrošnju električne energije ili gasa, što će dovesti i do značajnih smanjenja računa.

Vakuumski solarni kolektori kombinuju visoke performanse vakumskih cevi sa kapacitetom brzog prenosa toplote grejnih cevi, kako bi obezbedili kolektor koji može efikasno da radi u svim klimatskim uslovima i obezbedjuje dovoljne količine vode.


Pločasti solarni kolektori su najčešći i najzastupljeniji tip solarnih kolektora za upotrebu u domaćinstvu. Dizajn je jako jednostavan, izolovana kutija sa apsorberom koji je zavaren za bakarnu cev kroz koju protiče tečnost za transfer toplote.

Vakuumski solarni kolektor ili pločasti solarni kolektor?


Kako  odabrati izmedju vakuumskog solarnog kolektora i pločastog solarnog kolektora? Tabela prikazuje osnovno poredjenje.

 Poredjenje
Vakuumski solarni kolektor
Pločasti solarni kolektor
komentar
Cena kolektora
umerena
niska
Porediti samo cenu kolekora nije preterano korisno. Cena ugradnje i očekivani godišnji energetski prihod, trebaju biti uzeti u obzir prilikom donošena odluke.
Cena ugradnje
umerena
visoka
Ugradnja pločastog kolektora može biti skuplja zbog potrebe za hidrauličnom dizalicom prilikom ugradnje, pošto su pločasti kolektori veoma teški.
Težina kolektora
lagan
težak
Vakuumski solarni kolektori su lagani i mogu se podići pomoću merdevina. Pločasti solarni kolektori su veoma teški i za montiranje je potrebna dizalica za podizanje.
Rad u sistemima sa niskim temperaturama
dobar
dobar
Pločasti solarni kolektori su pogodni za grejanje vode u domaćinstvima (<60C) pošto gubitci toplote na višim temperaturama rezultuju lošom efikasnošću konverzije solarne energije.
Rad u sistemima sa visokim temperaturama
dobar
loš
Vakumski solarni kolektori su pogodni kako za upotrebu u domaćinstvima tako i za industrijsku upotrebu u sistemima sa visokim temperaturama (<120C) zbog visoke efikasnosti konverzije solarne energije čak i pri visokim temperaturama.
Rad po hladnom vremenu
dobro
loše
Pločasti solarni kolektori loše rade u hladnim vremenskim uslovima.
Vakuumski solarni kolektori rade dobro i u hladnim vremenskim uslovima.
Vertikalna orijentacija
da
da
I vakuumski solarni kolektori i pločasti solarni kolektori mogu biti postavljeni vertikalno orijentisani, ali treba obratiti paćnju na to da vakumski solarni kolektori zahtevaju i ugao od 20-80 stepeni.
Horizontalna orijentacija
ne
da
Vakuumski solarni kolektori mogu biti postavljeni samo sa orijentacijom cevi gore-dole, ne i levo-desno.
Pločasti solarni kolektori mogu biti postavljeni bilo kako.
Ugao postavljanja
20-80 stepeni
0-90 stepeni
Vakuumski solarni kolektori moraju biti postavljeni pod uglom od 20-80 stepeni kako bi se osigurao optimalan rad grejnih cevi. Pločasti solarni kolektori mogu biti postavljeni pod uglom od 0-90 stepeni, iako ovo nije idealno zbog izloženosti suncu, pošto bi ugao trebao da bude što približniji geografskoj širini.
Otpornost na grad
umerena
visoka
Vakuumski i pločasti solarni kolektori mogu izdržati udare grada veličine >25mm prečnika, medjutim pločasti solarni kolektori su jači.
Mogućnost popravke
da
ne
Ukoliko je vakumski solarni kolektor oštećen usred udara grada ili pada grane, pojedinačna tuba se može zameniti.
Ukoliko se pločasti solarni kolektor ošteti, mora se ceo zameniti.
Otpornost na kamenac
dobra
loša
Zbog malog prečnika bakarnih cevi koje se koriste u pločastim solarnim kolektorima, kamenac može lakse blokirati ove cevi nego u vakumskim solarnim kolektorima koji koriste cevi većih prečnika.